CHAPTER ONE &

THE FUNDAMENTAL
PHYSICAL
QUANTITIES

In order to study the science of music, it is necessary to learn some
of the technical vocabulary of acoustics. This requires that we first
define a number of technical acoustical terms so that we may use them
properly and without ambiguity. However, acoustics is the study of
systems that produce and propagate what we recognize as sound, and
is based on the larger area of science called physics. We must there-
fore begin by learning some of the technical vocabulary of physics.
The entire vocabulary of physics is quite extensive, but we will need
to concern ourselves with only a small part of it; that part, however,
will be quite indispensable.

The science of physics begins by considering objects and concepts
with which we are intuitively familiar because we deal with them
constantly in our everyday experience. However, the discipline of
physics refines our thinking about these things not only by defining
them as rigorously as possible, but also by making these definitions
quantitative. This makes it possible to describe our objects and con-
cepts by using numbers; they then become what we will call physical
quantities, and we can discuss them with much more precision than
we can discuss things to which we cannot attach numbers.




4 The Physical and Acoustical Background

When dealing with physical quantities as described by numbers,
the use of elementary mathematics becomes not only useful but indis-
pensable. Mathematics is an abstract construction of the human mind,
and it is really quite miraculous that it should have an immediate and
practical application to the real world, serving as a quantitative lan.
guage with which to discuss those things that can be described by
numbers. Mathematics, like physics, covers an extensive area, but what
we will need is even a smaller part than we need of physics; the barest
essentials of algebra will be sufficient. Those who view mathematics as
beyond understanding may be comforted by the assurance that the
little we will employ will require not quite as much effort as balancing
a checking account at the end of the month. What we will need is
not so much the paraphernalia of mathematics as the practice it de-
velops of thinking in quantitative terms. To try to dispense completely
with mathematics and mathematical notation would be comparable
to trying to study harmony without using the musical staff or musical
notation.

With these preliminaries out of the way, we may begin our discus-
sion of physics. We start by defining three fundamental physical
quantities: ‘length, time, and mass. When these are defined, other
physical quantities can then be defined in terms of them. The quanti-
ties chosen as fundamental are actually selected rather arbitrarily and
could be replaced by others; however, the three that have been selected
serve as well as any.

Length

The first fundamental unit chosen is that of length. This is a physical
quantity with which we are all quite familiar. It is associated with the
equally familiar concept we call distance, the spatial separation of two
points. To determine a distance, we first select some agreed unit of
length and see how many times this unit is contained in the given
distance. The result of this process is called a measurement. In general,
our unit of length will fit into the given distance a certain whole num-
ber of times, with something left over. By subdividing the unit of
length into smaller portions, the amount left over can be measured
in terms of these subdivisions. With sufficiently fine subdivisions, the
measurement of distance can theoretically be made as accurate as we
please.

To be widely useful, the unit of length should be one agreed upon
by the majority of users; it then becomes a standard of length. Our
present standard is the (meter. It was originally meant to be one
ten-millionth or 10-7 of the distance along the surface of the earth
from the north pole to the equator. (The exponential notation used
here and subsequently is explained in the Appendix.) This original
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The Fundamental Physical Quantities 5

intention turned out to be impractical, so the meter was subsequently
defined arbitrarily as the distance between two fine scratches on a
particular metal bar constructed for the purpose. This standard is
kept at the International Bureau of Weights and Measures in Seévres,
France; copies of it are distributed to other countries to serve as
subsidiary standards. (In 1960 this standard had become too inaccu-
rate for present-day measurements, and the meter was redefined in
other terms; however, we need not concern ourselves further with it.)
The system of units based on the meter as the standard of length is
called the metric system.

The meter serves as the standard of length all over the world. This
is true even in England and the United States, which do not cus-
tomarily use the meter as a unit of measurement, but instead use the
foot. However, the foot is not based on a separate standard; it is de-
fined in terms of the meter, the relationship being 1 foot = 0.3048
meter, exactly. The foot is the unit of length in the English system.

For the measurement of lengths it is convenient to have available
various-sized multiples and sub-multiples of the standard. Those in the
English system are quite inconveniently arranged, with 12 inches =
1 foot, 3 feet = 1 yard, 5280 feet = 1 mile, and so forth. This creates
unnecessary trouble; for example, to convert a distance given in feet
to the same distance expressed in miles, we must divide the number
of feet by the awkward number 5280.

The metric system is much more sensibly arranged in this respect.
All multiples and sub-multiples are expressed in terms of powers of
10, such as 100, 1,000, and so on. A length of 0.01 meter is called a
centimeter, and 1,000 meters constitutes one kilometer. Conversions
are now much simpler. To change a distance given in meters to the
same distance expressed in centimeters, we multiply the number of
meters by 100, and this merely means moving the decimal point; for
example, 2.67 meters = 267 centimeters.

The use of prefixes to indicate the factors of 1000, 0.001, and so on,
is quite useful. For example, the prefix centi means 1440 or 10~2 of
whatever it is attached to, as 1 centimeter = 0.01 meter. Those we will
need to know are as follows:

mega — 10 = 1,000,000
kilo —10°® =1,000
ceni —1072= 0.1
milli — 1073 0.001
micro — 108 0.000001

For example, one millimeter = 10—3 meter, and is a convenient unit
for small distances. The preceding list is extended considerably in both



robertwilley
Highlight

robertwilley
Highlight

robertwilley
Highlight


6 The Physical and Acoustical Background

directions for use elsewhere in the subject of physics, but we do not
need more than the above.

To save space in diagrams and in mathematical equations, it is con-
venient to abbreviate the names of the units in the recommended
fashion, as follows:

meter — M
centimeter — @)
millimeter — mm
kilometer — km
foot — ft

Abbreviations for names of other quantities will be given as they are
defined.

The concept of length is involved in what we call a displacement,
which we obtain when we move an object from one place to another.
Physicists cannot talk for very long without drawing pictures and this
is a good place to start; Fig. 1 illustrates the displacement of an object
moved from point A to point B. The amount of the displacement ob-
viously will be measured in terms of some unit of length. The physi-
cist, who never uses a short word when a long one will do, calls the
amount of a displacement its magnitude. A displacement is not speci-
fied completely if only its magnitude is given; it is also necessary to
give its direction. We will meet with a number of physical quantities
of this sort, which involve both direction and magnitude; they are
called vector quantities. In Fig. 1 the arrow drawn from A to B can be

Fic. 1. A displacement has both mag-
nitude and direction.

used to represent the displacement, both in magnitude and direction,
and this representation will be used with other vector quantities as
needed. Most of the time we will not be concerned with the directions
of displacements and other vector quantities, but only with their sense
—that is, whether they are positive or negative.

After we have defined the fundamental units, we can combine them
in various ways and obtain new ones that are called derived units.
From the unit of length we can obtain the unit of area as a derived
unit. The area of a rectangle, for example, is obtained by multiplying
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its length by its width; a square 5 meters on a side would have an area
5 meters X 5 meters = 25 square meters. The square meter is a derived
unit. Since it is obtained by multiplying meters by meters, which is
equivalent to meters squared, it is convenient to use m? as an abbrevia-
tion when needed. Similarly, the volume of a box, found by multiplying
the area of its base by its height, would be expressed in cubic meters,
abbreviated m®. Many of the derived units we shall obtain subse-
quently will be used often enough to be given special names. For
example, the acre is a unit of area in the English system.

Time

The next fundamental unit chosen is that of time. As with length, we
have an intuitive feeling for what we mean by time; what is needed
for quantitative purposes is a defined unit in which to measure it. For
a considerable period of history, the rotation of the earth served as a
convenient basis. From observations of the sun moving across the sky,
taken over a considerable period of time, we can work out an average
solar day. This day is divided into 24 hours (abbreviated hr), each
hour into 60 minutes (min), and each minute into 60 seconds (sec).
This means that there are 86,400 seconds in a day, so we may define
the second as 1/86,400 of a solar day. Recently it has been found that
the earth wobbles a bit as it rotates on its axis and by present-day
standards is not really a good clock; as a result, it has become
necessary to define the second in other terms. These problems do not
concern us, and for our purposes it is sufficient to consider the second
as something we can read from the second hand on a watch.

Velocity, Speed, and Acceleration

From the fundamental units of length and time, we may now obtain
some important derived units that we will need subsequently.

The first of these is again one with which we are intuitively familiar;
it concerns objects in motion. For such an object, its displacement, as
measured from some starting point as a reference, is continually chang-
ing. The rate at which the object’s displacement is changing is called
its @elocity. Since displacement in general involves both a direction
and a magnitude, so also does velocity. To describe an object in mo-
tion, therefore, we must state not only how fast it is moving, but in
what direction; velocity is another vector quantity.

For our purposes, we will generally not be concerned with the direc-
tions in which things are moving, but only with the sense of the motion
—up or down, for example. We may then simplify matters by con-
sidering only the magnitude of the velocity; this is a quantity we call

(speed; and one with which we are quite familiar in this automotive
age.
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8 The Physical and Acoustical Background

We will measure the speed of an object by observing how many
units of distance are covered in one unit of time. For example, we may
observe an automobile moving along the highway and find that it
travels, say, 135 meters in a time interval of 5 seconds. Its speed is
then 135 meters per 5 seconds, or 27 meters per second (abbreviated
m/sec). Both the amount—27, in this case—and the unit—meters per
second—are equally important in describing the speed. In general, if
an object moves a distance D meters in a time t seconds, its speed S in
meters per second will be

S = 2 . (1)
t

We could equally well measure the speed of the car in English units,
in which case we would find it to be 88 feet per second. A person in
the car could look at its speedometer and find its speed to be 60 miles
per hour. All of these descriptions of the speed are equivalent. In fact,
a sailor riding in the car would be correct in saying that its speed was 52
knots, the term knot being applied to a unit of speed of 1 nautical mile
per hour. (Sometimes one hears the redundant term “knots per hour”;
the person using it may be a sailor, but he is not a physicist. )

If the speed of an object is given, we may turn the above formula
around and write

D=S -+t (2)

so that if we know the speed of an object and the time during which
it moves, we can find the distance it covers. Obviously we must use
consistent units; if the speed is in miles per hour, the time must be
in hours, not seconds.

Both the above simple formulas are based on the assumption that
the object is moving with a constant or uniform speed; if this is not so,
they will not give correct answers. The corresponding mathematical
formulas for the case of nonuniform speed are more complicated, and
we will not need ther.

Nevertheless, the fact that the speed of an object in motion need
not be constant introduces us to an important new concept. Just as
velocity is the rate at which the displacement of an object is changing,
so the rate at which its velocity is changing is a quantity we call
acceleration. Since velocity involves a direction, so also does accelera-
tion, making it another vector quantity.

The velocity of an object may change either in direction, in magni-
tude, or in both; in any case, there is acceleration. For example, the
object may be moving in a circle with a constant speed; the direction
of its velocity is then constantly changing, and it is being accelerated.
However, in the examples we will be considering, motions will gen-
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The Fundamental Physical Quantities 9

erally be in straight lines, so no change in direction will be involved.
Hence, for our purposes, we may consider acceleration as the rate of
change of speed. If the object is speeding up, the acceleration is posi-
tive—that is, in the same direction as the object is moving. If the
object is slowing down, the acceleration is negative, in the opposite
sense. A negative acceleration is sometimes called a deceleration.

To illustrate, let us again consider the car on the road. If we push
down on the pedal supplying gasoline to the motor, the car speeds
up, so this pedal is sometimes called the “accelerator.” If we step on
the brakes, the car slows down, so we could call the brakes “decel-
erators.” Suppose the car is speeding up, and at a particular instant the
speedometer (calibrated for our purposes in meters per second instead
of miles per hour) reads 10 meters per second. Now assume that the
speed of the car increases from 10 meters per second to 30 meters
per second in 5 seconds; this is a net change in speed of 20 meters per

second, so we get for the acceleration, expressed as the rate at which
the speed is increasing,

20 m/sec > 4 m/sec

acceleration = —
5 sec 1 sec

b

meaning that the speed increases by 4 meters per second each second.
However, since algebraically

alb a 3
Tt P (3)
we may write
: 4m
acceleration = ———,
sec * sec

Also, algebraically,
sec * sec = sec?,
so we may use this notation and write more concisely
acceleration = 4 m/sec?.

The unit of acceleration in the metric system is then 1 m/sec2, read as
“one meter per second squared.”

Mass

The third fundamental physical quantity is not as easily defined as the
first two, since it is not as intuitively evident. It is called mass. For our
purposes it will be sufficient to say that mass is a property possessed by
all matter. This is not a very complete definition, but we will hope
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that the concept will become clearer in subsequent discussions. The
mass of a given piece of matter is the same wherever it may be—
whether on the surface of the earth or in outer space.

As with the other units, we measure masses by comparing them with
a standard. The present standard of mass is the kilogram (abbreviated
kg), which is defined as the mass of a particular cylinder of platinum
kept along with the standard meter at the International Bureau of
Weights and Measures. Replicas of the standard kilogram are used
throughout the world as subsidiary standards.

The mass of any object can be compared to the standard mass by
a process called weighing. We will discuss this process after we have
unscrambled the concept of mass from another physical quantity that
is intimately associated with it.

Force

This new quantity is again one with which we are quite familiar. It is
called foree, and is simply a push or pull. Practically everything we
do in our everyday lives requires the application of forces: lifting ob-
jects, opening doors, or even simply standing. We recognize the exis-
tence of a force when it acts on our person by the physiological feeling
of pushing or pulling that it produces.

In the external world, removed from any physiological sensation, a
force can manifest itself in one of two ways. First, a force can produce
a distortion in a piece of matter; that is, a force can alter the shape
of an object. If we pull on a wire spring, we can stretch it out of its
usual shape; if we push on a lump of putty, we can squash it into a
different form. Hence, if we see a spring being stretched, or a lump of
putty altering its shape, we may expect to find forces acting. The
spring, if it is not stretched too far, will return to its original shape
if the force is removed. Materials possessing this property are said to
be elastic. Most substances possess this property to some degree; how-
ever, any of them will become permanently deformed if stretched too

far.

Second, a force applied to a mass can produce an acceleration, set-
ting it into motion if it is at rest or changing its motion if it is not.
When we throw a ball, we certainly exert a force on it, and we observe
that it accelerates until we release it. Hence if we observe a ball under-
going an acceleration, we may expect to find that a force is acting on it.

Like acceleration, a force has a direction associated with it; this was
already implied somewhat in our statement that a force is a push or
pull. A force exerted on a given mass may be up, down, or in any
given direction; however, the acceleration produced will always be in
the direction of the force. This seems fairly obvious, and can be
checked in the laboratory; the world would be a strange place if this
were not so.
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The Fundamental Physical Quantities 11

There is a force which we experience constantly and which acts on
every object in the vicinity of the earth; this is the force of gravity.
A famous physical law, the law of gravity, states (in part) that every
piece of matter in the universe exerts an attractive force on every other
piece of matter. Hence the large mass of the earth exerts this force on
all objects near it; the force is directed toward the geometrical center
of the earth, which means that for us on the surface of the earth the
force is directed vertically downward. The force of gravity acting on a
mass is given a special name; it is called its weight. This is illustrated
in Fig. 2(a); the force is represented by an arrow whose direction is

STRlNG”A
FORCE—>
4 MASS MASS\()
<—WEIGHT WEIGHT —>

Y

EARTH-a

(a) (b)

Fic. 2. (a) The weight of a mass is the force of gravity acting on the mass.
(b) A mass in equilibrium.

that of the force and whose length is proportional to the magnitude
of the force, as was done with other vector quantities.

Since every object on the earth has weight and since weight, being
a force, can produce acceleration, we might expect that every object
on the earth should be accelerated downward. This is sometimes the
case, as we find when we accidentally drop something, but many ob-
jects around us are not accelerating at all. This is because the weight
of the object may not be the only force acting on it. Suppose we tie a
string to the mass of Fig. 2(a) and hold on to the string so the mass is
at rest, as in Fig. 2(b). The weight of the mass is still there, and can
be felt; in fact, we are pulling up on the string with a force equal to the
weight. There are then two forces acting on the mass; they are equal
in magnitude, but opposite in direction. Since the mass can not accel-
erate in two directions at once, it simply does not accelerate at all.
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The mass is then said to be in equilibrium. The two forces acting have
balanced or canceled each other, so the net force acting is zero.

We can see that the equilibrium situation is a very common one,
A block resting on the table, as in Fig. 3(a), is in equilibrium; the

PUSH
WEIGH WEIGHT
\l \‘

FRICTION, |

L’:ORCE OF FORCE OF1
TABLE TABLE>

(a) (b)

F1c. 3. (a) A block in equilibrium on a table. (b) Equilibrium with four
forces.

weight of the block pulling it down is canceled by the force of the table
pushing it up.

According to another physical law, forces always occur in pairs; for
any force, there is another one somewhere that has the same magni-
tude and is along the same line, but is acting in the opposite direction.
In Fig. 2(b), we pull up on the string to support the mass; the string
pulls down on us with an equal force. In Fig. 3(a) the earth pulls
down on the block, and the block pulls up on the center of the earth
with an equal force. The table pushes up on the block, and the block
pushes down on the table with an equal force. In any given situation,
however, we are concerned with only one of the forces of each pair;
in Figs. 2(b) and 3(a), we are interested only in the forces exerted
on the mass and on the block; we are not concerned with the forces
they exert on their surroundings.

To return to the block on the table: Suppose we now push on the
block in a horizontal direction. If the table were perfectly smooth, the
block would accelerate along the table. However, most tables are not
perfectly smooth, and if we do not push too hard we find that the
block does not move. This is because a new force appears as soon as
we start to push; this force is called friction.

The forces due to friction are curious things. For one thing, they are
always in opposition; whatever the direction the block is pushed, the
frictional force pushes in the opposite direction. For another, frictional
forces can adjust themselves to any magnitude within limits, so that as
we push more or less hard on the block, the friction becomes whatever
is needed to cancel the push. The net force on the block, both horizon-
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The Fundamental Physical Quantities 13

tally and vertically, is then zero, so the block is still in equilibrium.
Fig. 3(b) illustrates this equilibrium situation, with the block at rest.

However, there is generally a limit to the amount of the force that
friction can develop, so if we push hard enough, we can get the block
to accelerate. If the push is adjusted to just the right value, we can
get the block to slide at a constant speed, without acceleration. Here
the frictional force is still equal to the pushing force, and we still have
equilibrium. The criterion for equilibrium is not that the block be at
rest, but that it not be accelerating. Fig. 3(b) also illustrates this
equilibrium situation, the block moving with constant speed.

Forces do not have to be directed only horizontally or vertically, but
can be directed at other angles; we will then have more complicated
equilibrium situations. For example, consider a mass hung by two
strings, as shown in Fig. 4. The strings exert forces F; and F,, which
must be directed along the strings. Then the two forces F, and F, are
equivalent in all respects to a single force R, called the resultant,
found by a simple rule: draw a parallelogram with F; and F, as two
adjacent sides; the resultant force R, in magnitude and direction, is
then given by the diagonal of the parallelogram as shown in Fig. 4.
The resultant R must be equal and opposite to the weight of the mass
in order for the system to be in equilibrium. Any two forces can be
replaced by their resultant, as found by this method, without affecting
the behavior of the system in which the forces are acting. We will
find this principle useful later, as for example when we discuss the
violin.

So far we have said nothing about how we are to measure the force
or what our unit of force is to be. Since a force can produce either an

Ay

< WEIGHT

|

F1c. 4. Mass in equilibrium supported by two strings, illustrating the paral-
lelogram rule.
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acceleration of an object or a distortion of its shape, we may in princi.
ple use either of these effects as a basis of measurement. The measure-
ment of a force by using the distortion of an object will involve the
elasticity of its material; this is an undesirable complication, particu.
larly in establishing a unit which is to be used as a standard. To avoid
this difficulty, forces are basically defined and measured in terms of

the accelerations they produce.

To do this, we need the help of experiments in the laboratory. We
assume that we already have some means of measuring forces, so that
we can apply known forces to known masses and measure the resulting
accelerations. If we apply various forces to a given mass, we find a
quite reasonable result: the acceleration is directly proportional to the
force and in the same direction, so that doubling the force, for example,
will double the acceleration. Alternatively, if we apply a given force
to different masses, we find that the acceleration is inversely propor-
tional to the mass, so that doubling the mass will give half the
acceleration. If we let M be the mass, F the magnitude of the force,
and a the resulting acceleration, we can combine the above observa-
tions in the single equation

F=M-a. (4)

This equation is one of the fundamental equations of physics. It
summarizes in one concise statement the results of centuries of think-
ing and speculating about the way things move. We will use it
subsequently not so much in its mathematical formulation but rather
for the insight it gives us into the behavior of things. It tells us that
increasing the forces acting on a system will generally produce larger
accelerations and hence larger velocities and displacements; increasing
the masses of a system will have the opposite effect.

Eq. (4) also defines the unit of force. If we make M =1 kilogram
and a = 1 meter per second squared, the force F will be 1 kilogram
meter per second squared, which is now the unit of force. Since we
are going to use this unit quite often, we give it a special name and
call it one newton (abbreviated N). The newton is then that force
that imparts to a mass of one kilogram an acceleration of one meter
per second squared. The unit of force is now defined in terms of the
three fundamental units of length, mass, and time.

A simple application of Eq. (4) above is to freely falling bodies.
For example, if the string supporting the mass in Fig. 2(b) is cut,
the weight of the mass (the force of gravity on it) will cause it to
accelerate downward. This will be true for any unsupported object,
for which the only force acting is its weight. If we measure the accel-
eration of a falling body, it turns out to be 9.8 meters per second
squared regardless of the mass of the body. (This will not ordinarily
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be true for a light object like a feather, since air friction supplies some
supporting force. In a vacuum a feather will fall as fast as any other
object.) For the falling body, the F in Eq. (4) is the weight of the
body. It then follows from Eq. (4) that the weight of a body is
proportional to its mass. Quantitatively, its weight in newtons is 9.8
times its mass in kilograms.

If a mass is accelerated by a force and the force removed when a
given speed is reached, the mass will continue to move in a straight
line with that speed. Only the application of another force can change
the speed; in particular, the mass can be stopped only by applying a
force in the direction opposite to its motion. This property of a mass
in motion to remain in motion is called momentum.

The definition of force in terms of mass and acceleration is quite
fundamental in that it does not depend on any material property other
than mass. However, in practical work the use of accelerations to mea-
sure forces is rather inconvenient, so instead we may use for this pur-
pose the distortions forces produce in material objects. For example,
a coiled spring made of some elastic wire such as spring steel may be
stretched by applying forces to it, and the amount of stretch is propor-
tional to the force, provided the spring is not stretched so far as to
acquire a permanent deformation. (Many other systems besides
springs have this property, which will turn out to be of great musical
importance.) If we hang the spring from a support, as in Fig. 5(a),
the bottom of the spring will be in a certain position, which we may

MASS

~—Ef+w/\/\/\/\/¥l

(a) (b)

Fic. 5. (a) A spring balance. (b) Weighing a mass by means of a spring
balance.
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mark as “0” on the support. A force of one newton downward wi
stretch the spring to a new point which we may mark “I” on the
support. A force of two newtons will then stretch it twice as far,
giving point “2,” and so on. This arrangement is called a spring
balance, and is useful for practical measurements of forces.

A spring balance can be used to measure masses, since the weight of
an object is proportional to its mass. If a mass is suspended from the
spring as in Fig. 5(b), a position can be found for which the mass
remains at rest, with the spring stretched a certain amount. This is
obviously an equilibrium position, for which the weight of the mass
downward is balanced by the force of the spring upward. Masses can
thus be compared by the amount of stretch they produce in the spring;
this is one method of weighing, which we mentioned earlier.

This method of weighing has the disadvantage of depending on the
elasticity of the spring. Another method of weighing is by the use of a
beam balance, or platform balance, as illustrated in Fig. 6. This device

iEAM m
L;)

PIVOT

MASS

<— PAN *

‘*——

Fi1c. 6. A beam balance for comparing masses.

consists of two pans suspended from a beam which is supported at its
center by means of a pivot. The beam will tip to one side or the other
depending on which pan has the larger downward force acting on it;
if the forces are equal, the beam remains horizontal. Since equal masses
will have equal weights, the beam balance thus provides a method for
determining when masses are equal. Masses can thus be weighed with
this arrangement by comparing them directly to a standard.

On the moon, the force of gravity is about one-sixth what it is on
the earth. A spring balance marked off to read weights on the surface
of the earth would give quite erroneous readings if taken to the moon;
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its reading for a given mass would be one-sixth as much. A beam
balance, on the other hand, would read correctly, since it compares
masses directly.

In our discussion up to this point we have avoided the use of English
units. The reason for this is that the common term pound (abbreviated
Ib) is used in our everyday lives as both a unit of mass and a unit of
force, with no distinction between the two. Ordinarily this causes us
no trouble, since a mass of one pound, for example, has a weight of one
pound. However, if we wish to use these quantities in physical formu-
las, we must be careful to distinguish between pounds force and
pounds mass. For example, an object falls with an acceleration of 32
feet per second squared, this being the acceleration produced by a
force of one pound acting on a mass of one pound. Hence Eq. (4)
above obviously does not work with these units. Furthermore, a man
with a mass of 150 pounds and having a weight of 150 pounds on the
earth would have the same mass on the moon, but his weight would
go down to 25 pounds. In a satellite orbiting the earth, his mass would
still be 150 pounds, but his weight would be zero. This confusion of
terms makes it desirable to avoid the English system as much as
possible.

Pressure

In our discussion of forces we have so far considered that they act
essentially at points. The string supporting the mass of Fig. 2(b) is
acting at a single point. The weight of the mass may also be considered
to act at a point; if the mass is a sphere, this point is at its center. Simi-
larly in the other examples, there is no need to think of the forces as
acting at anything but points.

However, there are other situations in which a force is definitely not
acting at a point, but is instead spread out over an area. In this case
we can think of the amount of force that is acting on each unit area;
this is a quantity called {pressure;, one which we will refer to very
often. The unit of pressure will be newtons per square meter (ab-
breviated N/m?2). If a force F acts over an area A, the pressure p is
given simply by
s

(5)

Heame e

Fluids exert pressures on their containers, for example, and anything
immersed in them. Fig. 7 illustrates forces due to pressure acting on the
surface of a vessel containing liquid, and on the surfaces of an object
immersed in the liquid. The forces due to pressure are always perpen-
dicular to the surface on which they act.
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18 The Physical and Acoustical Backgroyyg

We may illustrate the concept of pressure further with a simple
example. Suppose Fig. 7 represents a square tank whose bottom me,.
sures 0.5 meters X 0.5 meters and which contains water to a depth of 2
meters. The total mass of water in the tank will then be 500 kilograms.
Since each kilogram weighs 9.8 newtons, the total weight of water will

- T —_ >

— L — F1c. 7. Forces exerted by the pressure
s = of a liquid on the container and on an
e el il immersed object.

e

be 500 X 9.8 = 4.9 X 10® newtons. This force is spread over an area of
0.25 square meters, so the pressure p on the bottom of the tank, as

given by Eq. (5), is

< 49 x 103 N
0.25 m?

= 1.96 X 10* N/m?2

The same pressure is exerted on the side of the tank at the bottom, as
indicated by the horizontal arrow near the bottom of the tank in
Fig. 7. The pressure at a point in a liquid is produced only by the
amount of liquid above that point; hence at a point higher up along
the side of the tank, the pressure is less. Halfway up the side, the
pressure will be half that at the bottom, and at the top water surface,
it will be zero. This decrease in pressure at points higher up the side
of the tank is illustrated by the horizontal arrows in Fig. 7.

In English units, pressure is usually expressed in pounds force per
square inch. When we ask the service station attendant to put 30
pounds in our tires, we do not mean that we want a mass of 30 pounds
of air in them. What we actually want is enough air to give a pressure
of 30 pounds force per square inch on the inside of the tire.

We spend our lives surrounded by the earth’s atmosphere, which
exerts a pressure on everything in it, like any other fluid. At sea level,
this pressure amounts to very nearly 10° newtons per square meter,
or (in English units) about 15 pounds force per square inch. It
decreases with altitude; at an elevation of 15,000 feet is about half
that at sea level. Normally we are unaware of this pressure, but we do
notice changes in it if they are large enough, as when we go up in
an airplane or under water; generally the change in pressure mani-
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fests itself in our ears as curious noises or perhaps pain. The actual
value of the atmospheric pressure at any given place changes a little
from time to time; its value at any given time is called the ambient
pressure. Slow changes in the ambient pressure are of interest to
meteorologists, furnishing information on changes in the weather. Small
but rapid changes in the ambient pressure produce sensations in the
ear which we call sound, and which we will subsequently study in
considerable detail.

Work and Energy

The terms work and energy have various shades of meaning in our
everyday lives. In physics, however, they have very specific meanings.
If a force acts on an object and results in the object moving, then
physical work is done by the force. For example, in Fig. 3(a), neither
the force of gravity nor the force of the table acting on the block does
work, since the block does not move. In Fig 3(b), however, if we
push hard enough on the block to move it, we will do work.

The work that is done is measured by the product of the force times
the distance moved in the direction of the force. If F represents the
force and D the distance moved, then the work W done by the force is

W =F-D. (6)

We could express this in newton meters, but since in physics we use this
quantity a great deal, we give the unit of work a name of its own and
call it a joule (abbreviated J). If a force of one newton acts through
a distance of one meter, it does one joule of work.

The distance used in Eq. (6) above must be that moved in the
direction of the force. In Fig. 3(b), for example, the force of gravity on
the block does no work when the block moves along the table because
there is no motion in the direction of this force.

In order to do work, we must expend énergy: Any system which can
do work must have a supply of energy available from somewhere to
accomplish this work. This is a consequence of a very fundamental
physical principle known as the law of conservation of energy, which
states that energy cannot be created or destroyed, but can only be
transformed from one form into another. To the physicist, this makes
energy just as real as money; it cannot be spent unless there is a
supply somewhere to draw on, and once spent it is generally gone
forever. In our everyday lives we are becoming increasingly conscious
of the fact that the energy we need so much of cannot be created
from nothing, and where it will come from in the future is becoming
a matter of considerable concern.

The definition of physical work given above is somewhat at variance
with our intuitive feelings about things. If I lift a heavy weight off the
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20 The Physical and Acoustical Backgroypg

floor to a certain height and hold it there, I am doing physical wo}
while I lift it, but not while I am holding it steadily aloft. Howeye
everyone knows that holding a heavy object up off the floor is “harg
work,” even if the object is kept motionless. It is true that no physic]
work is being done in this case; however, the human body is a very
complex system, and it turns out that muscles have to use up energy
just to exert a force, so physiological work must be done in order to
hold a heavy object off the floor. A table, however, can hold up the
object indefinitely without expending energy and getting tired. Conse.
quently, we will disregard the physiological complications and adopt
the definition of work as given here.

Energy occurs in various forms. The kind we are discussing here in
moving things around is mechanical energy. It occurs in two different
forms; potential energy, which is the energy a system can have because
of its configuration, and kinetic energy, which is energy a system can
have because of its motion.

To illustrate: If we lift a mass of one kilogram off the floor to a height
of two meters, we will have to exert a force of 9.8 newtons, and so will
do 19.6 joules of work, as given by Eq. (6) above. The mass can now
exert forces on other objects by reason of its weight, and so can do
work in turn; the amount that could be obtained is just what was given
it, namely 19.6 joules. The energy that the mass has because of its
elevation off the floor is thus potential energy.

If we take the same mass and throw it, we cause it to accelerate by
exerting a force on it, and so do work. If we exert a force of 9.8 newtons
to throw it, and apply this force over a distance of two meters, we will
again do 19.6 joules of work. Because of its momentum, the mass can
exert forces on other objects, as by striking them, and so can do work
on them in turn. As before, the amount that could be obtained is just
what was given it, again 19.6 joules. The energy the mass has because
of its motion is thus kinetic energy.

These two kinds of energy are interchangeable. If we raise the mass
off the floor and let go of it, it falls. As it descends it loses potential
energy but, since it speeds up, it gains kinetic energy. When it strikes
the floor it has an amount of kinetic energy just equal to the amount of
potential energy it had when released. This is one example of the law
of conservation of energy, in this case, mechanical energy; in this illus-
tration the total energy of the falling mass, kinetic plus potential, re-
mains constant at 19.6 joules as the mass falls.

Another form of energy with which we are all familiar is heat, which
is what we put into things to make them warmer. The law of con-
servation of energy applies also to heat. When the mass discussed in
the previous paragraph strikes the floor, it stops, and its mechanical
energy disappears. However, collision of the mass with the floor gener-
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ates heat, and the heat energy produced is equal to the mechanical
energy that disappears, namely 19.6 joules.

Whenever forces do mechanical work in overcoming friction, heat is
generated. When we push the block in Fig. 3(b) across the table, we
do work overcoming the friction of the block sliding on the table. The
mechanical energy expended then appears as heat produced in the
sliding surfaces. It is the fate of all mechanical energy to eventually
disappear into heat energy (except for small amounts that may be
transformed into other forms of energy we have not discussed ). When
this happens, the energy is for practical purposes mostly gone, like
money spent. The reverse process of getting mechanical energy from
heat is possible, hut unfortunately only to a limited extent; a large part

of the heat energy in the world around us cannot be utilized as a source
of useful work.

Power

The concept of work developed in the previous section leads us to an-
other concept which is equally important: the rate at which workis done.
When we raise the mass off the floor in the illustration above, we may
do so quickly or slowly. The work of 19.8 joules done will be the same
in either case. If we did it in two seconds, we would do work at the
rate of 9.8 joules per second. If we required 20 seconds, we would do
work at the rate of 0.98 joules per second. The rate at which work is
done is called power. It could be measured in joules per second; how-
ever, we use the unit of power so much that we give it a special name,
the watt (abbreviated W). An expenditure of energy at the rate of one
joule per second is a power expenditure of one watt.

This unit is somewhat familiar to us since our electrical equipment
is rated according to the number of watts it uses when operating. A
100-watt light bulb uses up 100 joules each second it is burning. Ten
such lights would use 1000 watts, which is one kilowatt. To burn these
ten lights for 24 hours would require 1000 X 24 X 60 X 60 = 8.64 X
107 joules. The local electric company is in the business of selling elec-
trical energy and bills us at the end of the month according to how
much energy we have used. The company does not use the joule as a
unit of energy, but instead uses what is called a kilowatt-hour, the
amount of work done by one kilowatt expended for one hour; this
amounts to 1000 X 3600 = 3.6 X 10° joules. The ten lights above would
then use 24 kilowatt-hours in the 24 hours of burning. At a few cents
per kilowatt-hour, the joules the electric company sells us are quite
inexpensive.
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